Matematisk modell användbar i pandemiplanering

| 16 december, 2021 | 0 kommentarer

Med hjälp av en matematisk modell har forskare lyckats koppla samman bekräftade covid-19-fall med intensivvårdsinskrivningar och dödsfall. Modellen, som gör det möjligt att förutse och planera sjukvårdsbelastning, kan bli värdefull under den pågående pandemin samt vid framtida epidemier.

Det är med hjälp av en så kallad FIR-modell (en typ av filter för digitala system) som ett svenskt forskarlag, där bland annat Lunds universitet ingår, har studerat de senaste 20 månadernas covid-statistik. Vanligtvis presenteras statistiken i form av separat data med bekräftade fall, antal avlidna och antal inlagda för intensivvård. Men i den nya studien, som publiceras i den vetenskapliga tidskriften Scientific Reports, har forskarna upptäckt att kurvorna sammanfaller om man multiplicerar antalen med vissa faktorer och flyttar dem i tid.

– Vår studie ger en tydlig bild av pandemins utveckling. Genom den här mycket enkla modellen blir det möjligt att uppskatta dödligheten och hur den påverkas av vaccinationsprogrammet, säger Andreas Wacker, fysikforskare vid Lunds universitet.

Att tidigt förstå ett virus framfart vid en epidemi är av yttersta vikt när det kommer till smittskyddsåtgärder och sjukvårdsplanering. Den nya studien visar att även begränsad randomiserad testning – att man testar en viss mängd slumpmässigt valda medborgare då och då – kan ge en god skattning av smittläget samt cirka två veckors förutsägelse av sjukvårdsbehovet. Modellen ger även en förståelse för dynamiken mellan restriktioner, vaccination, vårdbelastning och dödsfall. Studien, som genomförts inom en bred samverkan mellan forskare från olika discipliner, är inte bara applicerbar på coronapandemin.

– Den kan användas för att göra motsvarande skattningar vid framtida epidemier. Jag blev förvånad över att en så pass enkel modell kan beskriva historiska data, säger Kristian Soltesz, forskare vid Lunds tekniska högskola.

Av studien framgår att uppskattningsvis 360 000 svenska covid-fall saknas i statistiken på grund av otillräcklig testning från mars till juni 2020. Forskarna kan också visa hur dödligheten förändrades under pandemins olika faser. Under 2020 låg den på 0,8 procent men sjönk snabbt till 0,1 procent under första hälften av 2021 – ett tydligt resultat av vaccinationsprogrammet. Från juli 2021 ökade dödligheten igen med en topp i september, något som indikerar att immuniteten från vaccinationen minskar över tid. Forskarna kan också slå fast att antalet smittade under 2020 uppgick till 1,3 miljoner, något som visar att Sverige var långt ifrån flockimmunitet.

Genom den här studien får allmänheten en bättre bild av pandemins förlopp i Sverige. Man kan också tydligt se nyttan av vaccinationsprogrammet, säger Andreas Wacker.

Förutom Lunds universitet har Chalmers tekniska högskola, Göteborgs universitet och Linköpings universitet deltagit i arbetet.

Artikeln publiceras i den vetenskapliga tidskriften Scientific Reports: ”Estimating the SARS-CoV-2 infected population fraction and the infection-to-fatality ratio: a data-driven case study based on Swedish time series data”

För mer information, kontakta:

Andreas Wacker, professor

Fysiska institutionen, Lunds universitet

046 222 30 12

070 731 57 03

[email protected]

Kristian Soltesz, universitetslektor

Institutionen för reglerteknik, Lunds tekniska högskola

046 222 87 77

[email protected]

Presskontakt:

[email protected]

073 027 58 90

Kategori: Marknadsnyheter

Om skribenten ()

Tanalys är en sajt för investerare som med teknisk analys vill förbättra sin trading. Tanalys erbjuder teknisk analys från flera ledande analytiker, samt nyheter och utbildningar.

Lämna ett svar

Din e-postadress kommer inte publiceras.